An Ahlfors Islands Theorem for Non-archimedean Meromorphic Functions
نویسنده
چکیده
We present a p-adic and non-archimedean version of Ahlfors’ Five Islands Theorem for meromorphic functions, extending an earlier theorem of the author for holomorphic functions. In the non-archimedean setting, the theorem requires only four islands, with explicit constants. We present examples to show that the constants are sharp and that other hypotheses of the theorem cannot be removed.
منابع مشابه
Ahlfors’ contribution to the theory of meromorphic functions
This is an expanded version of one of the Lectures in memory of Lars Ahlfors in Haifa in 1996. Some mistakes are corrected and references added. This article is an exposition for non-specialists of Ahlfors’ work in the theory of meromorphic functions. When the domain is not specified we mean meromorphic functions in the complex plane C. The theory of meromorphic functions probably begins with t...
متن کاملNEW PROOF OF THE AHLFORS FIVE ISLANDS THEOREM 339 from
Let D j, j = 1 , . . . , 5, be simply-connected domains on the Riemann sphere with piecewise analytic boundary and pairwise disjoint closures. Let D C C be a domain and denote by 3rA(D) = f a (D, {Dj}~=I) the family of all meromorphic functions f : D ~ C with the property that no subdomain of D is mapped conformally onto one of the domains Dj by f . (If there is such a subdomain, then it is cal...
متن کاملNon-archimedean Nevanlinna Theory in Several Variables and the Non-archimedean Nevanlinna Inverse Problem
Cartan’s method is used to prove a several variable, non-Archimedean, Nevanlinna Second Main Theorem for hyperplanes in projective space. The corresponding defect relation is derived, but unlike in the complex case, we show that there can only be finitely many non-zero non-Archimedean defects. We then address the non-Archimedean Nevanlinna inverse problem, by showing that given a set of defects...
متن کاملThe Role of the Ahlfors Five Islands Theorem in Complex Dynamics
The Ahlfors five islands theorem has become an important tool in complex dynamics. We discuss its role there, describing how it can be used to deal with a variety of problems. This includes questions concerning the Hausdorff dimension of Julia sets, the existence of singleton components of Julia sets, and the existence of repelling periodic points. We point out that for many applications a simp...
متن کامل